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Lilt of S

a length of first layer of bar

b length of second layer of bar

c acoustic velocity

6(t-T) Dirac delta function (0 if t $ i)
e normal strain

k travel time

n number of terms in an infinite series

p pressure (compressive normal stress)

PO peak pressure

p mass density of bar material

s time parameter used with Laplace transform 4

a normal stress

t time coordinate

u displacement

A area of cross section

A transmission coefficient
mn

B product of transmission coefficients

E r'odulus of elasticity

H(t-T) Heaviside function (0 if t<T and 1 if t>T)

I impulse (dimensions of pressure times time)

P Laplace transform of p

U Laplace. transform of u

x ,'x2 'x 3  space coordinates along length of bar measured from left

end of first, second, and third layers, respectively.

________________ ____________I
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Abstract

The multi-layered cylinder made of elastic
materials and subjected to an arbitrary end excitation
is solved using the classical wave method, the Laplace
transform method, and the transmissibility method.
Complete numerical solutions are presented for a pressure
pulse having a rapid rise and an exponential decay.
Curves for displacements, stresses, and accelerations
at various sections of bars of varying geometries are
presented.



STRESS WAVE PROPAGATION

IN LAYERED ELASTIC CYLINDERS

1. Introduction. The problem of a semi-infinite solid under the

action of a pressure pulse that is uniformly distributed over the surface

at any instant of time is formally equivalent to the problem of a rod

which suffers no lateral contraction and is acted upon by a time-varying

pressure at its end. In this report three methods of solution for this

problem are discussed; namely, the classical wave method, the Laplace

transform method, and the transmissibility method.

Bars with one or more elastic layers are considered with the

elastic properties varying from layer to layer. The geometries considered

are shown in Figure 1. J

(a) p(t) _7"1

(b) p(t)

a

(C) p(t)

a

(d) p(t) •lI..

a b -

(e) p(t) F

a b

Figure 1
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The solutions for the bars of Figure la and lb are given first uwing

the classical wave method. The Laplace transform method is used to

find the solution for the bar of Figure ic. This solution is shown to

reduce to the solution found using the classical approach when a - co

(Figure la) and when the second layer is rigid (Figure lb).

The tranasissibility method is explained in conjunction with the

rods cf Figures la and lb and is then used to solve the problem of

Figure ld. That solution is then compared with the Laplace transform

solution and is also specialized to give the solution for Figure le.

The pressure pulses considered are the impulse of Figure 2a, the

step function (or Heaviside function) of Figure 2b, and the exponentially

decaying function of Figure 2c and 2d.

p

(a) p t

t

p

W) P o {ddt "bbt}

ApPO "
"(d) p Po.P Go (tr)

Figure 2 j
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The first two are used to demonstrate the classical wave approach andI
to explain the transmissibility method. The pulse of Figure 2c is

used in demonstrating the Laplace transform me~hod. The pulse of

Figure 2d, representing a practical shape which can be produced in the

laboratory, is used to demonstrate the power of the transaiissibiUity

method. This report concludes with graphs representing displacement,

accelerktion and tress at various locations along the rod for the pulse

of Figure 2d.

2. Basic Theory. The basic equation governing the response of a

cylinder to a given end disturbance such as an applied pressure is based

on the equation of motion which follows from Newtonts second law and the

stress-strain relation governing the behavior of the assumed material.

For an elastic material, the normal stress • is related to the normal

strain a through Hookets law

a - Es()

where E is Young's modules of elasticity. The normal strain is

related to the axial displacement u through the relation

au (2)

where x is measured along the length of the bar. The equation of

motion is easily derived if we consider a free body diagram of dx

length of the bar as shown in Figure 3. The bar has the cross section

area A and the mass density p . The normal stress assumed in the

conventional manner to increase in the direction of increasing x.

The normal force is given by the product of the uniformly distributed

- _ - _ __
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normal stress and the area.

Figure 3

Applying Newton's second law of motion we find

SdxA -pA -- dx (3)

or ator

acr a2 u
Sp p a (4)

where a is the acceleration. This useful relation is valid for any

continuous elastic body or to the material within a given layer of a

layered elastic body.

Combining (i), (2), and (3) we obtain

&C at

or
1

UXX - Utt (6)

where the subscripts represent differentiation with respect to x or

t. The constant c is the acoustic velocity for the material and is

given by
c -• (7)

CS

• + . . . ... .. . ..
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The partial differential euation (6) has the general solution

u - f (t- x1) + g (t + )(8)

ux

where f and g are arbitrary functions of (t and (t +

respectively. The first of these represents a progressive wave

moving in the positive x direction while the second. represents a

regressive wave moving in the negative x direction. Associated with

the displacement in (8) are the normal strain

1, f I (t + 1c g'( x

the normal stress
c =E u E ' ( x •g' xt~

a E Uf (t- )+ (1(t +0)

the velocity

v =ut f (t + g, (t+c) (1)

and the acceleration
,, x g, xa- u t-- f (t-• + g"(t + ) (1U

where primes represent differentiation with respect to the argument

(t - x ) or (t + ), as the case may be. The waves move with the speed

C.

3. Classical Wave Method. The classical approach to the problem is

centered around a straight forward application of prescribed end con-

ditions to the governing equation (8). Two elementary problems will

demonstrate the method and will be useful later on as comparisons are

made between the classical method and the other methods considered.
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Two pressure pulses will be considered. The pulse of Figure 2a

is applied at x - o and is described mathematically by

o(o,t) = - p0 T 6(t) (13)

where 6(t) is the Dirac delta function defined by

0 t <0
6(t) - c t 0o (1)

0 t o

tOD

f 6(t) dt 1 (15)
COO

The product p0 T is an impulse and may be denoted by the symbol I.

The negative sign in (13) indicates a compressive stress. We may

rewrite (13) as

o(o,t) = - I 8(t) (16)

The pulse of Figure 2b when applied at x = o is described

mathematically by

o(o,t) = - P0 H(t) (17)

where H(t) is the Heaviside function and is defined by

H(t) t<o (18)
1 t > o

More generally, we may introduce the delay time t axA-" 'ite0

o o<t <t

6(t-to) o(t) - {co t-to (19)

o t> t 0
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andi0 0< t <to
H(t -to) - Ho(t) - 1 t (20)

Two bar geometries will be considered here: the semi-infinite

bar of Figure la and the bar of finite length and right end fixed

shown in Figure lb.

(a) Semi-infinite Bar. Our first observation for the semi-infinite

bar is that waves moving to the right are consistent with a pressure

pulse applied at x=o but waves moving to the left are not. We con-

clude, on physical grounds, that

g(t +• ) o (21)
0

and thus
xu..f(t -•) (22)

Mhe problem is to find the function f(t - x ) which is consistent

with the end condition associated with the applied pressure pulse.*

For the impulse of (16) we are led to try the general stress relation

a(x,t) I- 6 (t - x) (23)
C

which, at least, satisfies (16). In terms ofdisplacement, we use

(10) to find
ux - 6( t -x(4•)

or
U,, + I&H( t ( 25)

where

H(t - to) 0 6(t -t) dt (26)
-0O

It is assumed that all bars treated are initially at rest.

-b
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Equation (25) is an acceptable solution for u since f(t - • )

in (22) is of the correct form,

f~t- t ). LcH.t- ) (27)

The impulse pressure thus gives rise to a step function type dis-

placement. See Figure 4a.

For the step-function pressure we have (17). A likely expression

for the stress at any section is

a(x,t) =-p H(t- ) (28)

which leads to
p 0c

u (x,t) = +-- (t - ) H(t -x ) (29)
where

JH(t - to ) dt - (t - to ) H(t-to ) (30)

This is a ramp function indicating that the step pressure has associated

with it a displacement which increases linearly from o at the wave

front to an indefinitely large value behind the front. See Figure 4b.

lK----x-ct --- A i'---- -t
~t)-•l "P p(t)•

1x ;P. x

-u (a) -u (b)
Figure 4

____ ___ ___ __ ____ ___ ___ ___ __ ____ ___ ___ ___
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(b) Finite Bar with Fixed End. For the finite bar with one end

x a) fixed we must find a displacement of the form (8) which

satisfies the end conditions

1(o, t) - p(t) (31)

and

u(a, t) = o (32)

In this case waves will be reflected back from the fixed end and theI
functions f(t - • ) and g(t + 2 ) are both required. We must consider

c c
the solution appropriate to the time interval of interest. For example,

when t < a/c , only the incident wave is present since reflection

can not take place until an incident pulse reaches the fixed end.

During this interval we have

C(x,t) = - I 6(t -x ) (33)
C

u(x,t) = + •e .( ) (34)

for theimpulse. When t <.- , the end condition (32) assumes
c

importance and we find

When t 3a there will be reflection from the left end and in

order to satisfy both (31) and(32) , we have
u~~)=Ic x2a- 2a)

U(xt) - [(t ) H(t H(t- .)] (36)

__ _

_____ ____
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For t:<#C we have Ht -0

Uxt.1Ic.[~ ~ 2a -x 2 + ~ 4a

Other terms may be added in 
order to extend the interval 

beyond (7

t - 4a/c. For the step-function pressure pulse, (37) become

2a 2a-
U(x't) - -t - ) H(t -

(tt-- 2a x + H(: 2

- C

Three important deductions should be made from the above develop-

ment. (1) Reflected stresses are of the same sign as incident stresses

when a fixed end is reached but reflected stresses are opposite in sign

from incident stresses when a free end is reached; (2) displacements

reflected from a fixed end, are opposite in sign to the incident dis-

placements but are of the same sign as the incident displacements when

reflected frcm a free end.; and (3) the solution for multiple reflections

is tedious using the classical solution, requiring a skillful adjust-

ment of wave functions in order to satisfy the given end conditions.

4. Laplace Transform Method.. The basic element in the Laplace

transform method is the transform operator itself. The function f(t),

for example, when multiplied by e dt and integrated from o to oD is

defined as F(s), the Laplace transform of f(t). Thus,



0

If the function to be transformed is dependent on two variables, say

x and.. t, then
0o

[ [f(x,t)] = F(x,s) j f(x,t) ; st dt (4O)
0

The transform of the first and second time derivatives of a

function f(t) are found by performing an integration by parts as

"I [t (x,t)] j J (x,t) • st dt.
0

- s F(x,s) - f(x,o) (41)

and

9[ ftt (x,t) ] = s2 F(x,s) - s f(x,o) - ft(x,o)

(142)

Having established these relations we now multiply each term (6) through
- st

by e dt and integrate from o to oD to obtain the transformed

equation

1 F2UM(x,s 7 [ U(x,s) - s u(x,o) - ut(x,o) (43)
1 C

I where
we [u(x,t) ] = U(x,s) 

(44).

If at t-o the bar is at rest, we have u(x,o) - ut(x,o) a o and

(43) reduces to
2

Uý (x,s) - U U(xs) - o (45)
C
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The partial differential equation in (x,t) space is thus reduced to an

ordinary differential equation in (xs) space.

At a fixed end (x = a), we have in (x,t) space

u(a,t) - o (46)

In (x,s) space this becomes

U(a,s) = o (47)

At a free end (x = o), we have in (x,t) space

a(o,t) = EU (o,t) o a (48)

which in (x,s) space becomes

Ux(Os) = o (49)

At an end (x o) with a prescribed pressure p(t), we have in (x,t) space

o(o,t) = - p(t) = EUx(Ot) (5o)

and in (x,s) space

"EUx(o,s) = -f p(t) e st dt = -P(s) (51)

o

where P(s) is the transform of p(t). For the impulse pressure, step

pressure, and the exponential pressure (Figure 2c) we have, respectively,

P(s) - I f 6(t) e st dt = 1 (52)

0

P(s) = Po f H(t) e st dt = po/s (53)

o

F(s) -dtb bt st dt 7(s Ud b

0
o ~(54)i( ,t
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Now let us apply the, Laplace transform method to the two layered

bar of. Figure lc as redrawn in Figure 5.

F- •-- 
x2

Figure 5

For this problem we have the acoustic velocities c and c2 for

the two layers, the moduli of elasticity E- and E the mass

densities p1  and P 2 with a length a for the finite portion. The

prescribed end conditions are

o(o,t) - - p(t) = EU x(Ot) (55)

ul(a,t) .= U2(o,t) (56)

Elulx(a,t) = E2 u2x(o,t) (57)

u2 (O, t) = o (58)

Equation (55) prescribes the end pressure, (56) prescribes that the

displacements must be the same at the interface, (57) that the stresses

must be the same at the interface and (58) that no disturbance be felt

at the far end of the bar. The coordinates x1  and x2 are measured

from the left ends of the respective layers.

The governing equations in (x,s) space are
s2

ULXX (xl,S) - -- U1 (X,S) - 0 (59)
c1

2
U xx (x 2,s) - 2 U2 (x 2,s) - o (60)

c2

d. ~.. --- ~-- - - - -
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Now let us apply the Laplace transform method to the two layered

bar of Figure lc as redrawn in Figure 5.

P(t)-a- --

Figure 5

For this problem we have the acoustic velocities c and c for
the two layers, the moduli of elasticity E and E the mass

densities p and with a length a for the finite portion. The1P P2

prescribed end conditions are

or(o,t) - p(t) = Eux(o,t) (55)

u (a,t) = u 2 (o,t) (56)

Ellx(a,t) = E"2 u(o,t) (57)

u2 (co, t) = o (58)

Equation (55) prescribes the end pressure, (56) prescribes that the

displacements must be the same at the interface, (57) that the stresses

must be the same at the interface and (58) that no disturbance be felt

at the far end of the bar. The coordinates xI and x2 are measured

from the left ends of the respective layers.

The governing equations in (x,s) space are

2
U1,x (xlS) - S U1 (xls) - o (59)

c1

2u2xx (x2,s) - 2 - o (60)

C2
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and the end condition are
P(s) (1

Ul (o,s) - - (61)

U (a,s) = u2 (Os) (62)

E1 UIx (a,s) - E2 U2x (o,s) (63)

U2 (0o, s)- o (64)

We solve (59) and (60) to obtain

"-SXl/c1 sx/cl (65)

U1 (xls) = B1 e + B2 e

_-sx 2 /c 2  -sx 2 /c 2

U2 (x2 ,s) = B3 e + B 4 e (66)

where B1 , B2, B3, and B4 are constants to be determined.

Applying (64), we find B 4 = o. Applying (61), we find

c1 P(s)
B1  B2 = Eis (67)

Applying (62) we get
-sa/cI sa/cI

B = B e + B2 e (68)

Applying (63) we get
B( E1 c2 )esa/c E1 C2  sa/c 1

21- 2

(69)

Solving these simultaneously, we introduce

ilill ilii i iI

p
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- 1 c 2-

A12 (70)

and find

c1 P(s) 1
"E ' -2as/Fcl- (71)

1 1 + A 1 2 ea5c1 ()

cI P(s) r A e -2as/c 1 - (2

B 1 12

1 1 e 2 as/o'l I (72)12 1' 1 + A e " Is i 12

(724

cI P(S) A e 1s1/c1 A12Bs2Sa/C (73)

1 ,12
(wa)

u - - sa/cIFe -s 2ar)/2

c1 P(s) e 1 (I - A1 2) e

Us2 (x21s), (2sa/c (75)

Using the expansion

S n n
1 :. 1) z (76)

0

we rewrite (74) and (75) in the form

cI P(s) _7- n e-S(xl + 2an)/c1
U. (xI, s)' , ', ( A12) 1

0 A 2e-s(2a + 2an - xl)/C1 (77)
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xIC P(s) (1-A esa/ci e -s(x2 + 2nac 2/¢i)/¢2U2(x2,s) E, EsJ_ (-A12n•
o (78)

For the special case of a semi-infinite bar of one layer .o - P2 ' P`

E1.- E2 - E, and c 1  C2 - c, and we have A12 = o. Then (74) and (75)

reduce directly to

c P(s) e-sx)/c
U1 (x',s) = Es (79)

c -s(x2+ a)/cc P(s) e
U2 (x 2 ,s) Es (80)

These must be transformed finally from (x,s) space back to (x,t) space.

This requires us to first state the exact nature of the pressure pulse

whose Laplace transform is P(s). If, for example, we have the impulse

pressure

p(t) - I 6(t) (81)

then from (52)

F(s) - I (82)

and we have

U(xs) -r e (83)

c e -s(x 2 + a)/cu2 (x2Vs) "TS e (8)

ks/
It is easily shown that (e-ks )s is the transform of H(t - k) and

Ul(x 1 ,s) and U2 (x2 ,s) are the transforms of ul(xl,t) and u2 (x2 ,t).

Thus,

Ul (xl't) (85)



-17-

u2 (x2,t) -0 H(t c ) (86)

The second of these is quite clearly included in the first and we write

simply

u(x,t) - c H(t - ) (87)
r, c

This checks the result found for the same problem in (25).

For the special case of the finite bar of length a and fixed

right end we have E2 and A1 2 = 1. Equations (77) and (78)

reduce in this case to

1  c1 P(s) )n [e-s(xI + 2an)/cl -s(2a + 2an - xl)/c 1Ul(Is) B e-e4
(88)

U2 (x2,s) - 0 (89)

When the pressure is a step pulse we have

p(t) - p0 H(t) (90)

and from (53), P(s) = po/S. Thus

7- )n -S(X + 2an)/c -s(2a + 2an x)/c ]U(x's) =• •- =0 -l n1 e - e

(91)
0

where the subscript on x,E, and c have now been dropped. The

transform of e /s 2 is (t - k) H(t - k). Hence, we find the inverse

transform of (91) to be



0o0 18 -

u(x,t) (_l)n x + 2a H(t- x + 2an

0

-(t 2 a + 2an - L) H(t 2a + 2an - X) ]
C c

(92)

For the n o and n 1 terms this expands to

L - x x 2a -x 2au(x, t) Y- [(t - 2E ) H(t L (t • -7

=(t -xc+2a)H(t xc + 2a) + (t-4••U • H(t 4a- )
a c c c

(93)

This is the complete solution if t < ha/c. It checks (38) which

was derived using the classical wave method.

Having established that the two layer solutions of (77) and (78)

reduce to those found earlier for the single layer, we now convert the

displacements in (x,s) space to (x,t) space. We consider particularly

the exponential pressure pulse of Figure 20 having the transform (54).

In (x,s) space, we have
CO

Ul(Xl'S) "P C 1 -AI2)n re's(x + 2an)/c.

0

-A -s(2a + 2an - x.1)/c 1] r d-A2 e d+s b+sJ

"A1 e -sa/cl 
(94)

- o 12 - 12e ( n- s (x2 + 2naC2/C1 )/C 2(d - b)E 12se

S (95)



-19-

At this point it is convenient to note a great simplification in

finding the inverse transforms of expressions such as (94) and (95).

In general, the inverse transform of P(s)/s is given by

SP(s)/s ] f p(t) dt (96)
0

We now write (94) and (95) in (x,t) space using

t
-I P(s) (dedt' be- bt) dt = -e-dt + e-bt (97)

The exponential terms in (94) and (95) give rise to a translation of

the multiplicative function. Thus - t .2 -

t-d(t - I..a+2az.xl)po Clcx÷,°
u_(xl't)- •d__ (-A12)n L e c1  - A12 e

2a+2an-xI-h~t- x ÷ an)b(t - ) ]

+e 1A2 e

(98)

-PO Cl Led(t -x2 +2nac 2/c.IaC2/c1

r(X2,3t) E (AI 2 )n -e1

0 -b(t x2 + 2hnaC2,'c*ac 2/c,
_ C) (1 - A1 2 )
02 (99)

where, for simplicity, the Heaviside functions, similar to those appearing

in (92), have been omitted. Consequently, any term in (98) or (99) must be

taken as zero whenever the parenthetical expression in the exponent for

that term is negative.

_____________________________ _1

a.l
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5. Transmissibility Method. The transmissibility method discussed

here is based on a direct physical interpretation of the results

found in the previous section using the purely mathematical technique

of the Laplace transform. The object is to be able to come to the same

results in less time and to have a better appreciation of the physical

behavior of the system. We begin by making several general observations.

First, in equations (77) and (78) we note that every term of the

series on the right hand side of the equation is of the form

U(x, s)=' (S) e'SkB (100)s

where the constant B includes constants such as A1 29.A2 3 ,etc. While

this is specifically shown for the bar of two layers, it is generally

true for bars of any number of layers. An increasing number of layers

only introduces more constants such as A12 into B. The quantity k

in the exponent of (100) will be seen to depend on c, u, x, and the

lengths of the layers.

Second, U(x,s) is the transform of u(x,t). Its general form,

shown in (100), is especially convenient since we can easily show that

2t
u(x,t) = W p(t) dt delayed by k (101)

For example, if

p(t) I 6(t) (102)

as in (81)
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and

P(S) p(t) e st dt (103)

then
C

u(x,t) = I (t - k) (104)

where H(t - k) is delayed in time by an amount k as compared with H(t).

Third, we observe that the presence of an interface separating

two layers of a bar causes a constant such as A12 (associated with

the interface separating the first and second layers) to be introduced.

A bar having five layers would necessarily have associated with it

A12, A23, A34, and A45. In general

E c

Am n

Amn Enc(105)

En m

A =-l if - = 0
mn cn

E E-1l<A <0 Ii.0 _m>-a
tn c c

m n

E E
A =0 if -Z _-

mn cm cm n

E "E
O<A <1 if - <-Zmn c C

m n

E
A +1 if -- I I

mn c
n

9



-22-

Fourth, since the displacement u(x,t) is a function of (t -)
C

in the general case, it follows that normal stress c(x,t), being

proportional to the x derivative of u(x,t), will be opposite in

sign to the displacement. Similarly, velocity and acceleration,

being related to the time derivatives of u(x,t) will have the same

signs as the displacement. A positive change in displacement is thus

associated with a negative change in normal stress and positive

changes in velocity and acceleration. The k,12 term in (74), for example,

represents a negative change in U1 (xl,t) but will represent a positive

change in al(Xl't).

With these observations in mind, we now study the results for the

semi-infinite bar of one layer and the finite bar of one layer with

right end fixed with the goal of learning how to predict the terms in

the series associated with more complicated geometries.

For the semi-infinite bar of one layer we have the results (82)

and (84) which are the same and may be written in the general case as

U(x,s) =c P(s) e c (106)
Es

This gives for the impulsive pressure p(t) = I 6(t),

u(x,t) = T H(t - M) (107)

C(xt) = -I 6(t - •) (108)

c

and for the step pulse,
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C P
u(x,t) =---(t I) H(t -) (109)

E c

G(x,t) = - P0 H(t - •) (110)

In this case, we have only an incident wave advancing in the x direction.-

For the single layer, fixed end, bar we have in the general case

from (77) with A12 = 1,

f(x s) =c P(s)OD(l [-s(x2an) -s(2a+2an-x))
U~~)= Es ~ ( e c - e c J (ini)

Now expand this series to obtain

-S.•x -s(2a-x) -s(x-2a) -s(4a-x)

U(x,s) = C P(S) -c e - e c + e c +Es

-s(x+4a) -s(6a-x) -s(x+6a) -s(Sa-x)
+ -e c -e c +e +

.+ (112)

The first term represents the incident wave [compare with (106)]. The

second represents the wave which has traveled the length of the bar

once and in addition has traveled the distance a - x. This is clearly

the wave which has been reflected off the rigid and and is moving to the

to the left. The third term represents the wave which has been reflected

off the fixed end once and off the free end once and is moving toward the

right.

i •
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Note that a sign change occurs in the displacement upon being

bounced off the fixed end but no sign change occurs when bounced off

the free end. A wave which has been bounced off the fixed end twice

and the free end twice (x + 4a) will have suffered two sign changes

and if positive in the incident phase will still be positive. Normal

stresses, on the other hand, suffers sign changes when bounced off a

free end but not when bounced off a fixed end. Table I shows the values

of B and k in (100) associated with each phase as related to a

sketch indicating the distance traveled by the pulse.

fr a

k x/c k (2a-x)/c k (x+2a)/c

B=+1 B =-1 B -1
k = (4a-x)/c k = (x+4a)/c k (6a-x)/c

B +1 B +1 13 -i

Table I

We now adapt this approach to the general problem of the two

layered bar which is semi-infinite in length and governed by equations

(77) and (78). The first term in the bracket of (77) represents
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signals moving to the right in the first layer while the second term

represents signals moving to the left in that layer. We expand (77)

to get

l-SXI1 -S(2a-xI)

UI(xlS) = Es e AI2 e 1

-S(x 1 +2a) -s(4a-xI)

A 2 C1  +

12 12

-S~xl4a)-s(6a-x1)

+ A12 e 1 A3 e 112 e -A e
+A 12

-s(x,+6a) -s(8a-x )

A3  e C1  4 e c + (113)

12 12

We see again by comparing term 3 with 2, 5 with 4, and 7 with 6, that

bouncing off the free end (the left end) multiplies the signaýt by a

factor of +1. Bouncing off the interface, however, multiplies the

signal by a factor of -A1 2  (which is equal to -1 for a rigid

interface). A signal which has bounced off the interface three times

and off the free end twice is thus multiplied by a factor of (-A3 2 ).

Table II shows the signal paths, delay times and coefficients for the

first layer of the bar under discussion.
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a

k Xl/C k = (2a-xl)/c 1  k (x1 +2a)/c 1

___ __ _.__ _____2 __ ___ __ ___.

B1 B =BA12 B=- 12
k = (4a-xl)/c 1  k (x1l+4a)/cI k (6a-x 1 )I/c 1

2 +A2 B 2A3
12 1A 12

Table II

For the second layer, described by (78), we have

es P(s) [1-A12] (S(a/c +x /c 2

2 2 sx112 ~2's) E= .s

-s(3a/cl+x2 /c 2 )
-A e +

12

2 -s(5a/ci+x2/c )
12e 12 ..

3 s(7a/c1 x/C)
3e. lx 2 + (114)

where x2 + a = xl. Each of these terms represents a signal moving to

I II I _ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ __ _ _ - _ _ _~~~.~.
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the right. The factor [l - A12] represents the intensity factor for

a signal which is carried across the interface from layer 1 to layer 2.

When multiplied by the intensity of the signal in layer 1 which reaches

the interface, we get the actual intensity of the signal transmitted

into layer 2. The first term in (114) represents the signal which has

come directly into layer 2 from the incident wave in layer 1. The

second term represents the signal which has been bounced (within layer 1)

off the interface once and off the free end once and is now transmitted

through the interface into layer 2. Just as the factor [1 - A1 2] is

necessary to indicate the diminution of intensity of the signal in

passing through the interface, so also is a multiplicative factor of

"A1 2 necessary for each bounce off the interface before entering layer 2

and a factor of (+l) for each bounce off the free end. Thus, a

signal which bounced off the interface three times, off the free end

twice, and then entered layer two would have a total factor of -[1 -

as indicated by the fourth term of (114). Table III indicates the relevant

information for the second layer.

k-a -A

k = a/c 1 + x2 1ck+ -- k/ 5a/c 1 + x2/c

B (1-A12) B - (l-A13) A_9 B =(1-A_ ) A2

Table III
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6. Bar with.Three Layers. We now use the physical understanding

gained in the previous section as a means of writing with minimum

formal mathematics the solution for a bar which is composed of three

layers, the third of which extends to infinity on the right as shown

in Figure 6.

a - - - b

p(t) •c cE E2, , E 3'c3

Xi x -- •2 4 x x3

Figure 6

Associated with the interfaces we will have need for the constants

A1 2 as defined by (70) and A2 3  defined by

E c

A2 E c 2  (115)
23

We now shall attempt to predict the possible. paths followed by a

signal before reaching a certain position in the bar and then state

the constants B and k in (100) associated with the terms of an

infinite series which correspond to those paths.
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Consider first layer 1. A displacement signal entering this

layer may bounce off the first interface or may be transmitted through

the first interface and bounce off the second interface back into the

second layer. Each time it bounces off the first interface it is multiplied

by -A1 2  if moving to the right, or by +A1 2  nf moving to the left.

Each time it passes through the first interface moving to the right it is

multiplied by (1-A 12). Each time it bounces off the second interface it

is multiplied by -A2-3 Each time it bounces off the free end it is

multiplied by (+l). Fach time it passes through the first interface

moving to the left it is multiplied by (l+A1 2 ). We note further that

every signal upon reaching a given point in the first layer will have

traveled a total distance of (2aa+20b+xl) if moving to the right at

the time in question where a and 0 are integers and a distance

(2aa+20b-xl) if moving to the left where again a and 0 are positive

integers or zero. If, for example, a=2 and 0=1 the path may be as

shown in Figures 7a and 7b. The path associated with a given set (a,O)

may not be unique as can be seen in Figure 7c and 7d. In general, we

may say that the number of paths associated with a given set (a,O)

is' for the +x1  and -x1  terms,

= (,+ (a - 1)!

For the example just considered, we find N=2, corresponding to the

two cases shown in Figure 7.
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1 a -4-w-- b --4

a) 4a a+2b+x 1 ,

(b) 4a + 2b - x1

(c) 4a + 2b + x

(d) 4a +2b-x 1,

Figure 7

The coefficient to be assigned to any term is dictated by the

signal path and is given by the product of the factors associated with

the penetration of each interface or the bouncing off each interface.

For example, the path given in Figure 7b requires the coefficient in (100)

B = (1-A12)(-A2 )(1+A 1 2)(42.)(-A1  ~ (1 A 2 (- 2) A2  (117)

The terms in parenthesis represent in order the penetration of the

first interface, the bouncing off the second interface, the penetration

of the first interface, the bouncing off the free end, and the bouncing

• 1 -I I D~ il I - H l l I I III II I I.. ... .. . . . S
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off the free end, and the bouncing off the first interface. It is

evident that once the path is determined, the coefficient B is easily

found. The delay time k in (100) is given by

4a+x1 2b
k = + -(118)
c1 c2

Table IV shows the signal paths and B coefficients for all combinations

of a and 0 from 0 to 3 for the first layer. The lines on the

paths indicate the (2aa+20b-xl) cases while the dotted extension line

represents the cases (2aa+20b+x 1 ).

For the second layer, we follow the same general procedure in

identifying the possible signal paths. The total path length will be

of the form [2a+l)a + 20b - x , however for a given set of (a,f)

values, the number of possible paths for signals moving to the right is

given by

N - (a+ 1(19)

while the number of possible paths for signals moving to the left is

given by

N t(a+ (120)

Table V shows the signal paths and B coefficients for values of (2+14)

from 0 to 25 and for 20 from 0 to 3 for signals moving to the

right at a given time at a given section. Table VI shows similar values

for signals moving to the left.

_..i
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, - a - b -----

a 0, 0=0, N=1 a =1, 0=0, N=I a =1, 0=1, N=1

02

B = 1 B =A12 B = -(-A A2) A 23
a = 1, 0=2, N=1 a =1, P=3, N=I a =2, 0=O, 1=I

(A12) A 23 A 1 2  1 3 12 B A12.

a = 2, 0=1, N=2 a =2, 0=1, N=2

B = (1-Al 2 ) A23 A1 2  B = (1-A22 ) A23 A12

a , 0=2, N=3 =2, 0=2, N=3 a =2, 0=2, N=3

B =(1-A 2 )
2 A 2 B =-(l-A 2 ) A 2 A 2  B =-(l-A 2 ) A 2 A 2

12 23 12_(3 122 A23 A12

a =2, 0=3, N=4 - a =2, 1=3, N=4 a =2, 0=3, N=4

B = -(1-A 2 )2 A 3  2 B -(1-A22 2 A1 2  B = (1-A2,)A3 A3 2
12 23 A(12A 12) 2 

2  A2 3 ___________

a =2, 0=3, N=4 a =3, 0=0, N=1

B (1-A4 2 ) A 2 3 "1 2  B___________ _____________

Table IV



a=3, 0=1, N=3 a =3, 0=1, N=3 a=3, 0=1, N=3

A2  = -(1-A2) A2 3 12 B = -(-2) A2 A2 3

a=3, 0=2, N=6 a=3, 0=2, N=6 a=3, 1=2, N=6

2 3 2 22 2 A23
B j ~A2 ) A 23 A 12  B =(1-A42 ) A 23 A2 B ( 142) 23 12

a =3, 0=2, N=6 a=3, 0=2, N=6 a=3, 0=2, N=6

A(i2)23- 12 12~ 23 12 B2 A23 A1

a =3, P=3, N=1O a=3, 0=3, N=10 a =3, 0=3, N=10

2 ) 3A 3  2 3 4 2 3 4
1-(-A12) A23 B -(1-A 1 2 ) A2 3 A1 2  B =-(1-A 1 2 ) A2 3 Ai2

a =3, 0=3, N=10 a=3, 0=3, N=10 a=3, P=3, N=1o

2 4 = (1'A42)2 A33 2 B =( 2) A23 2 12

a =3, 0=3, N=10 a=3, 0=3, N=10 a=3, 0=3, N=10

B =(1-.2) 2 3 2(1-2) 2A 3  2  2 (1- 2 ) 2 
A

3  2

a=3, 8=3, N=10

B (,_A 222 A 3 A 2

i 2A 3 A1 2  ,

0 Table IV (Continued)

JL] I I II II I ll l~ r I [ - ' ....... "" .. . .. . . . .
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Signal moving to the right

a=0, 0=0, N=1 a =0, 0=1, N=l a =0, 0=2, N=l

B (1-A B = -(-A 2 ) A 2 B(I-A A 32 2

a =0, 0=3, N1l a =1, 0=0, NJ.

B =-(1-AA2 ) A3 2  B = -(1-A 12 ) AI2

a 0=1, =i, N=2 a-=, 0=1, N=2

B (1-A1 ) A2 A2  B =-(l-A2 )(1-A 1 2 ) A2 3
B:(-12) 23 •12 i 12 3

* =1, 0=2, N=3 a =1, 0=2, N=3 a :=, 0=2, N=3

r--- -

B = -(I-A 2 ) A23 A?2  B = (1-A .2 )(1-A.)A2. B (1-A 2 ),( 2 I) 2 )A3)AI 2

S=1, 039, N=4 al, 03, N=4 a =1, 0=3, N=4

.- J •

B=-(I-A 2 )(1-AI 2)A32A B B 2 BXIA2-I4/

.a =1, 0=3, N=4 a= 2 , 0=0, N=1

B (1-A 2) A23 A1 2  AB = -(1- 2 ) A1 2

Table V
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a =2, 0=1, N=3 a =2, 0=1, N=3 a =2, 13, N=3

B=(.__-A• 2) (_-A.) A2 A1  B(1A. 2  A2  1

______________

S=2, 13=2, N4=6 a =2, 83=2, N=6 a =2, 1=2, N=6C-=

12 2IA12 2)(1-A_____12 Iq

a=2, a=2, N=6 a =2, 0=2, N=6 a =2, 0=2, N=6

22 2 2 2 2 2 22
B=(1A -A1 2) A 23 B=-(1-Al 2 )(1-A 2 )A23A12  B=-(1-Aid1- A23A 1 2

a =2, 0=2, N=O a =2, 0=3, N=0 a =2, 033, N=IO 0

1(2-A ) A A 2) 23 2

B=-(I-A12) (1A2 A23 B=-(1-A 1 2) (1-A2)A2 3AI2  B=-l-A12,A.l.. )Ai

S=2, 0=3, N=10 a=2, 0=3, N=10 a =2, 0=3, N=10
2 3 3

1' A)A 3 A )A3 AB=-( lA~ B=.(1-A ) 2(1-A, 2)4A~ B=(l- ~)(1-A1 2)A 11212 2312 2242A2 1 Ai

a =2, 0=3, N=10 a =2, 0=3, N=10 a =2, a =3, N=I

2 33' )A A3

B=( 1 -A~ (A 12 )A 3A2  B--(l12' -121 A23A1 2  B=( '-A12'(1-A 12 A23 12

a =2, 0=3, N=10

Table V (Continued)
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a =0, 0=1, N=1

Signals moving to the left B=-(l-A12) A23

a =0, 0=2, N=1 a =0, 8=3, N=I a =1, 0=1, N=1

B+ 2A2 (1,A12) B-=A12 A3 (1-A12) B=+__ A__(1-A_ _ _

'A12 Q2 -12 12 23 12A 1 2 A2 3 ( 1A 2 )
* =1, 0=2, N=2 a=l, 8=2, N=2 a=2, 0=1, N=1

BAi2A23 ( - 12) B2 3(1-A,2 ) (l-Ai2) A12____23( ___12) _

a -_, 8=3, N=3 a =1, 8=3, N=3 a =1, 0=3, N=3

a=2, 8=2, N=3 a=2, 8=2, 14=3 a=2, 8=2, N=3

322 2
B_,3_A23 (1.A12)2 B=_Al•223(I.A•2) (IA22) B=_•AZA23(I.•2 )(1-AI12),

a=2, 8=3, N=6 a =2 , 8=3, N=6 a=2 , 8=3, N=6

r c

B=-AiA 3 . (l1 2 ) B=A122A33(-A 2 ) (1-A 2 ) B=-A 23 (1-A 2 ) 2 (1-A1 2 )

a=2, 8=3, N=6 a =2, 8=3, N=6 a =2, 8=3, N=6

Table VI
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Values of k for each signal path are found using the expiession

(2a+)a (121)
c1 c2 02

Each signal path with its associated values of B and k may be

identified with a term such as (100). All such terms added together

will yield the series which represents the displacement at any point in

the layer considered exg'essed in terms of (x,s) space. Equation (113),

it will be recalled, was such an expression for the first layer of the

two layered bar.

We translate the series in (x,s) space into a series for (x,t)

space by performing the inverse Laplace transform as explained in the

previous section. The general term (100) will transform, for example,

into the term (101). For the impulse 1 6(T) '-his becomes (104).

The normal stress is found by multiplying the first x derivative

of u(x,t) by the value of E in the layer. The acceleration is found

by taking the second t derivative of u(x,t).

6. Numerical Examole. As a numerical example of practical

importance, we consider a pressure pulse as depicted in Figure 8.

It was chosen to simulate a pressure- time function actually reproducible

Fgr8

Figure 8
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in the lMoratory and has the equation

p(t) tp1 - G (4TI) + H(t-4T -55(t/T 1 -4 (122)

where TI, the travel time for a wave moving through the first layer is

given by

T1 = a/cI (123)

and

Go(4T11 H(t) - H(t-4T1 ) (124)

The bars considered have the geometric properties shown in Figure 9.

The length b of the second layer is chosen so that the travel time T2

of a wave through that layer will be exactly 1.5 times the travel time

of a wave through the first layer. Thus

b4.5ac 2 /c 1  (125)

Displacements and stresses as functions of time were determined at

locations x.=a/3, xl=a, x2=b3 and x2 =b.ý Accelerations were determined

it xI = a/3 and x2 = b/3. z

The physical properties of the materials in the bar are assumed

0 such that E1 /cI = 2E2 /3c 2  and 3E3 /C3 = 7E2 /c 2.

To fix ideas, we now choose a particular signal path associated

with a particular point in the bar and find the related term in the series

expansion for u(x,t). We choose as an example the point x, a/3 in

the bar of Figure 9c and the path associated with a = 2 and 8 1

and a signal moving to the left. This gives a value of k in (100) of

k = (4a-xl)/cj + 2/c 2 (126)
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(a) __

3

(b) F 3I 1
3 3

3 3

(d) f

3

Figure 9

The transmission coefficients in this case are found using (105) to be

A1 2 = 0.2

A2 3 =1.0 
(127)

From Table VI we now find B to be

B = (1-0.04)(1.0)(0.2) 0.192 (128)

The associated term in (x,s) space is

0.122 c1 P(s) -s(4a/c1+2b/c 2 -x /cl)U(Xls) 2 -/ 1) (129)
1Es

.To facilitate matters, we now use (96) to find the inverse transform

of P(s)/s where p(t) is given by (122). This yields

•- - 2 TI H(t-4TI) L -0. 575(t-4TI)T

C' •'(,)I.,] c G (4TI +- o1  -e (l)

057 -130
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The inverse transform of (129), is then

0.192 CI P F(t-k)2

u(1' B1 ET k 1

TI H(t'4T1 -k) e-eO575(t-4Tl'k)/T111

0.575 "(131)

where

Gk( 4 T,) = H(t-k) - H(t-4Tl-k) (132)

We now proceed to plot this curve. While the expression (131) may

appear to be tedious to plot it will be found with a little practice

that it offers no great difficulty. In a like manner, we calculate every

other term in the expansion for u(x,t) and plot it. The sum of all

terms is easily found graphically by summing the ordinates of all the

curves.

The displacement at xl=a/3 for the bar in Figure 9c is shown in

Figure 10. The curves for several of the typical terms in the series

expansion are shown as is the curve representing the sum. Because every

term was not considered in arriving at the sum, the resultant curve is

not precise quantitatively although it clearly describes the correct

trend. Figures 11, 12, 13, and 14 show the resultant displacement

curves for all the bars of Figure 9 at xl=a/3, xl=a, x 2 =b/3 and

x 2 =b.

The stress may be found directly from the displacement equation

(131) to be

i "
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(__,t) = 0-.192 p0 4T1 Gk( 4 TI) +

+ H(t-4Tl-k) e 0575(t-4Tk) /T1
1  (133)
_J

Curves for this and several other terms of the series are plotted in

Figure 15. Figures 16, 17, 18, and 19 show the resultant stress curves

for all bars of Figure 9 at xl=a/3, x1=a, x2 =b/3, and x2=b.

The acceleration is also found from the displacement expression

(131). It is

01192 C p
ut(xi~t) o T Gk(4TI-

uttx, 4T 1

-0.575(t-4Tl1-k) IT?

- 0.575 H(t-4T1 -k) e (134)J
This equation as well as similar equations for several other terms

appearing in the series expansion for acceleration are plotted in

Figure 20. In Figures 21 and 22 resultant acceleration

curves are plotted for all the bars of Figure 9 at xl=a/3. and

x =b/3
2
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ft0 .5

-- 0.5

9bi
/-1.0

-1.5 Composite acceleration curves for

all bars in Figure 9 -.r. xl=a/f

-- 2.0Figure 21

-2II*_0



8T 1  lOT1 12T1

ýT -4T 1-

~1 clp 0 tt

2.0

9c

,-1.

r 9b-. ý9a

'-0-5

--1.0 Composite acceleration curve for
all brs at x2=b/3

-15

Figure 22

2.0


